Generalized way to find individual digits during number conversion

Artem Los

Theorem

Given that a number in radix $10, n$, is to be converted into radix b, the k th digit of $(n)_{b}$ is found by the function below:

$$
\begin{equation*}
\delta(n, b, k)=\left\lfloor\frac{n}{b^{k}}\right\rfloor-b\left\lfloor\frac{n}{b^{k+1}}\right\rfloor, \quad n \geq b^{k}, \quad k \in \mathbb{N}, \quad n, b \in \mathbb{R} \tag{1}
\end{equation*}
$$

Proof

When converting from radix 10 to another base, a division using remainder can be performed. For example, when 7 should be converted into radix 2 , the following algorithm can be used:

1. Divide 7 by 2 to get 3 with a remainder of 1 .
2. Divide 3 (from (1)) by 2 to get 1 with a remainder of 1 .
3. Collect the last answer (i.e. in (2)) and all the remainders backwards. That is 'last answer', remainder in (2)', 'remainder in (1).
4. The result should be $(111)_{2}$.

The algorithm above can be generalised as follows:

1. Find the remainder when number n is divided by base b, e.g. $n \bmod b$.
2. Use the quotient in (1) to find the new remainder when the quotient is divided by the base, e.g. $\lfloor n / b\rfloor \bmod b$.
3. Repeat step (2) to get the second digit, e.g. $\left\lfloor\frac{\lfloor n / b\rfloor}{b}\right\rfloor \bmod b=\left\lfloor n / b^{2}\right\rfloor \bmod$ $b=\left\lfloor n / b^{2}\right\rfloor-b\left\lfloor\left(n / b^{2}\right) / b\right\rfloor=\left\lfloor n / b^{2}\right\rfloor-b\left\lfloor n / b^{3}\right\rfloor$
4. The step (3) should be repeated as long as $b^{k} \leq n$.

$$
\therefore f(n, b, k)=\left\lfloor\frac{n}{b^{k}}\right\rfloor-b\left\lfloor\frac{n}{b^{k+1}}\right\rfloor, \quad n \geq b^{k}, \quad k \in \mathbb{N}, \quad n, b \in \mathbb{R}
$$

